Exploration of polyepoxysuccinic acid as a novel draw solution in the forward osmosis process

نویسندگان

  • Chen Wang
  • Baoyu Gao
  • Pin Zhao
  • Ruihua Li
  • Qinyan Yue
  • Ho Kyong Shon
چکیده

Polyepoxysuccinic acid (PESA) is a green corrosion scale inhibitor. When PESA is used for wastewater desalination in the forward osmosis (FO) process, the diluted PESA solution could be used for cooling systems. In our investigation, the effects of membrane orientation, temperature and flow rate on FO performance are studied using PESA as a draw solute. The results show that the effect of temperature on water flux is obvious, but the water flux increase is higher from 25 C to 35 C than that from 35 C to 45 C. Compared to the FO mode, the water flux increases faster in the pressure-retarded osmosis mode (PRO mode) at high flow rate due to the reduction of concentrative internal concentration polarization (CICP). Compared with polyaspartic acid (PASP) and NaCl, the water flux of PESA is the lowest under the same conditions. However, PESA has the lowest specific reverse solute flux (Js/Jw) at both membrane orientations. For example in the FO mode this value is 0.46 g L , whereas that of NaCl and PASP is 1.12 and 0.74 g L , respectively. This means that PESA has lower loss to the feed side than NaCl and PASP in the FO process, which greatly reduces the replenishment cost of the draw solute. The use of PESA as the draw solute in the FO process to treat dyeing water has the advantages of stable water flux (within 20 min), high dye rejection (nearly 1) and reversible membrane fouling (restored to 97%). The nanofiltration (NF) process indicates the good performance of PESA recovery with a high specific water flux (0.94 LMH per bar) and rejection rate (97.8%). Thus, the overall performance of PESA demonstrates that it is a promising draw solute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamide Forward Osmosis Membrane: Synthesis, Characterization and Its Performance for Humic Acid Removal

In this research, modification on the ultrafiltration (UF) membrane by synthesis of a thin layer of polyamide selective layer was designed for high performances of forward osmosis (FO) water treatment. Two monomers, m-Phenylenediamine (MPD) and Trimesoyl chloride (TMC) with different concentrations of MPD (2.0% w/v and 1.0% w/v) were reacted with TMC (0.15% w/v) for interfacial polymerization (...

متن کامل

Performance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis

Forward osmosis (FO) has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2) and potassium bicarbonate (KHCO3) as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments we...

متن کامل

Mechanisms Involved in Osmotic Backwashing of Fouled Forward Osmosis (FO) Membranes

Organic matter leads to one of the biggest problems in membranes: fouling. Developing efficient cleaning processes is therefore crucial. This study systematically examines how alginic acid fouling formed under different physical and chemical conditions affect osmotic backwashing cleaning efficiency in forward osmosis (FO). The fouling layer thickness before and after osmotic backwashing was mea...

متن کامل

Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina

Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...

متن کامل

Thin film nanocomposite forward osmosis membrane prepared by graphene oxide embedded PSf substrate

One of the limiting factors in good performance of forward osmosis (FO) membranes is the internal concentration polarization (ICP). To reduce ICP, thin film nanocomposite forward osmosis (TFN-FO) membranes were fabricated by adding different amounts of graphene oxide (GO) nanoplates (0-1 wt. %) to polymer matrix of polysulfone (PSf) substrate. The prepared nanocomposite membranes exhibited both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017